Các chủ đề trong lý thuyết điều khiển tự động Lý thuyết điều khiển tự động

Điều khiển bền vững(ổn định)

Độ ổn định của một hệ thống động lực tổng quát không có đầu vào có thể được miêu tả theo tiêu chuẩn ổn định Lyapunov. Một hệ tuyến tính có một đầu vào được gọi là ổn định chặn đầu vào, chặn đầu ra(BIBO)(bounded-input bounded-output) nếu đầu ra của nó ở trạng thái bị chặn cho bất kỳ đầu vào bị chặn nào. Độ ổn định cho hệ phi tuyến có một đầu vào là đầu vào ở trạng thái ổn định (ISS-input-to-state stability), sẽ kết hợp độ ổn định Lyapunov và một khái niệm tương tự độ ổn định BIBO. Để đơn giản, những mô tả sau tập trung vào những hệ thống tuyến tính thời gian liên tục và thời gian rời rạc.

Theo mô tả toán học, điều này có nghĩa là để có một hệ tuyến tính nhân quả ổn định tất cả các cực của hàm truyền của nó phải thỏa mãn vài tiêu chuẩn phụ thuộc vào một trong hai phân tích trong miền thời gian liên tục hoặc rời rạc được sử dụng:

  • Trong miền thời gian liên tục, phép biến đổi Laplace được sử dụng để đạt được hàm truyền. Một hệ thống là ổn định nếu các cực của hàm truyền này nằm gọn ở phần tư thứ 2(phía trên, bên trái) của mặt phẳng phức (vì phần thực của tất cả các cực đều nhỏ hơn 0).
  • Trong miền thời gian rời rạc phép biến đổi Z được sử dụng. Một hệ thống là ổn định nếu các cực của hàm truyền này nằm gọn bên trong vòng tròn đơn vị. vì biên độ của các cực thì nhỏ hơn 1).

Khi các điều kiện tương ứng trên được thỏa mãn một hệ thống được gọi là ổn định tiệm cận: các biến của một hệ thống điều khiển ổn định tiệm cận luôn giảm từ giá trị ban đầu và không biểu thị dao động vĩnh cửu. Dao động vĩnh cửu xảy ra khi một cực có một phần thực bằng 0 (trong trường hợp miền thời gian liên tục) hoặc một modul bằng 1(trong trường hợp miền thời gian rời rạc). Nếu một hệ thống ổn định đơn giản không đáp ứng tăng mà cũng không đáp ứng giảm trong suốt miền thời gian, và không có dao động nào, thì nó là ổn định cận biên: trong trường hợp này hàm truyền hệ thống có các cực không lặp lại tại gốc tọa độ mặt phẳng phức(đó là thành phần thực và phức của chúng là 0 trong miền thời gian liên tục). Các dao động xuất hiện khi các cực với phần thực bằng 0 có một phần ảo không bằng 0.

Những khác biệt giữa hai trường hợp là không mâu thuẫn với nhau. Biến đổi Laplace là trong hệ tọa độ Descartes và biến đổi z là trong hệ tọa độ tròn, và nó có thể được biểu diễn:

  • phần thực âm trong miền Laplace có thể ánh xạ vào phần trong của vòng tròn đơn vị
  • phần thực dương trong miền Laplace có thể ánh xạ vào phần ngoài của vòng tròn đơn vị

Nếu một hệ thống được xem xét có một đáp ứng xung:

  x [ n ] = 0.5 n u [ n ] {\displaystyle \ x[n]=0.5^{n}u[n]}

thì biến đổi z (xem ví dụ này), là

  X ( z ) = 1 1 − 0.5 z − 1   {\displaystyle \ X(z)={\frac {1}{1-0.5z^{-1}}}\ }

sẽ có một cực ở z = 0.5 {\displaystyle z=0.5} (zero phần ảo). Hệ thống này là ổn định BIBO(tiệm cận) vì cực của nó nằm trong vòng tròn đơn vị.

Tuy nhiên, nếu đáp ứng xung là

  x [ n ] = 1.5 n u [ n ] {\displaystyle \ x[n]=1.5^{n}u[n]}

thì biến đổi z sẽ là

  X ( z ) = 1 1 − 1.5 z − 1   {\displaystyle \ X(z)={\frac {1}{1-1.5z^{-1}}}\ }

có một cực ở z = 1.5 {\displaystyle z=1.5} và không ổn định BIBO vì cực của nó có một modul lớn hơn 1.

Rất nhiều công cụ dùng để phân tích các cực của một hệ thống. Những công cụ này bao gồm các hệ thống đồ thị như quỹ đạo nghiệm số, biểu đồ Bode hay biểu đồ Nyquist.

Các thay đổi cơ học có thể làm cho thiết bị (và các hệ thống điều khiển) ổn định hơn. Các thủy thủ dùng tải trọng dằn (ba-lát) để tăng độ ổn định của các con tàu. Tàu thủy chở khách sử dụng bộ ổn định chống dập dềnh bằng cách mở rộng chiều ngang khoảng 10m và quay liên tục xung quanh trục của chúng để tăng lực đối trọng với sự lắc lư của con tàu.

Tính điều khiển và quan sát được

Khả năng điều khiển đượcquan sát được là những mục đích chính trong phân tích một hệ thống trước khi quyết định loại điều khiển tốt nhất được sử dụng,hoặc xem xét loại nào có khả năng khiển hoặc ổn định được hệ thống. Tính điều khiển được là khả năng tác động vào hệ thống để đạt được trạng thái đặc biệt bằng cách sử dụng một tín hiệu điều khiển thích hợp. Nếu một trạng thái là không thể điều khiển được, thì sẽ không có tín hiệu nào có thể có khả năng điều khiển trạng thái đó. Nếu một trạng thái là không điều khiển được, nhưng các đặc tính động học của nó là ổn định, thì trạng thái đó được xem là có khả năng ổn định hóa. Tính quan sát được là khả năng "quan sát", thông qua việc đo lường đầu ra, và trạng thái của một hệ thống. Nếu một trạng thái là không thể quan sát được, bộ điều khiển sẽ không bao giờ có thể xác định hành vi nó và do đó không thể sử dụng nó để ổn định hóa hệ thống. Tuy nhiên, tương tự như điều kiện ổn định hóa ở trên, nếu một trạng thái không thể quan sát được, nó vẫn có thể được phát hiện.

Nhìn từ một điểm quan sát hình học, các trạng thái của mỗi biến của hệ thống được điều khiển, mỗi trạng thái "xấu" của mỗi biến này phải điều khiển được và quan sát được để đảm bảo hành vi tốt trong hệ vòng kín. Đó là, nếu một trong các giá trị gốc của hệ thống vừa không điều khiển được lại vừa không quan sát được, phần động học này sẽ vẫn còn không xem xét được trong hệ vòng kín. Nếu một giá trị gốc không ổn định, các đặc tính động học của giá trị gốc này sẽ được xuất hiện trên hệ vòng kín mà do đó sẽ không ổn định được. Các cực không quan sát được thì không biểu diễn được trên đồ thị hàm truyền của biểu diễn không gian trạng thái, đó là lý do đôi khi điều sau đây được ưa chuộng hơn trong phân tích hệ thống động học.

Giải pháp cho vấn đề của hệ thống không điều khiển và quan sát được bao gồm việc thêm các thiết bị chấp hành và cảm biến.

Các đặc điểm của điều khiển

Có rất nhiều chiến lược điều khiển khác nhau đã được phát minh trong những năm qua. Những phát minh này đi từ những bộ điều khiển rất tổng quát như (bộ điều khiển PID), cho tới những bộ điều khiển khác dành riêng cho những loại hệ thống chuyên dụng(đặc biệt là robotic hay điều khiển hành trình).

Một bài toán điều khiển có thể có nhiều đặc điểm khác nhau. Độ ổn định, tất nhiên, luôn luôn xuất hiện: bộ điều khiển phải đảm bảo rằng hệ vòng kín phải ổn định, chưa kể là độ ổn định của vòng hở. Một sự chọn lựa nghèo nàn của bộ điêu khiển có thể thậm chí làm xấu đi độ ổn định của hệ vòng hở, điều thông thường nên tránh. Đôi khi cần đạt được các đặc tính động học đặc biệt trong vòng kín: nghĩa là các cực có R e [ λ ] < − λ ¯ {\displaystyle Re[\lambda ]<-{\overline {\lambda }}} , trong đó λ ¯ {\displaystyle {\overline {\lambda }}} là một số cố định luôn lớn hơn 0, thay vì đơn giản yêu cầu rằng R e [ λ ] < 0 {\displaystyle Re[\lambda ]<0} .

Một đặc tính tiêu biểu khác là việc loại bỏ một nhiễu loạn bước; bao gồm một bộ tích phân trong vòng hở(nghĩa là một cách trực tiếp trước khi hệ thống điều khiển được) dễ dàng đạt được điều này. Những loại nhiễu khác cần nhiều loại hệ thống con khác nhau được xét đến.

Những đặc tính khác trong lý thuyết điều khiển "cổ điển" quan tâm đến thời gian đáp ứng của hệ vòng kín: bao gồm thời gian thiết lập (thời gian cần thiết để hệ thống điều khiển tiến tới giá trị mong mốn sau một nhiễu), đỉnh vọt lố (giá trị cao nhất đạt được bởi đáp ứng trước khi đạt được giá trị mong muốn) và (thời gian xác lập, độ dốc suy giảm) khác. Các đặc tính miền tần số thường liên quan tới độ mạnh mẽ(xem ở phần sau).

Các đánh giá kết quả hiện đại sử dụng vài sự thay đổi của sai số theo dõi tích phân (IAE, ISA, CQI).

Nhận dạng và ổn định mô hình

Một hệ thống điều khiển phải luôn luôn có vài thuộc tính mạnh mẽ. Một bộ điều khiển mạnh mẽ là bộ điều khiển mà các thuộc tính của nó không thay đổi nhiều nếu áp dụng cho một hệ thống có khác biệt nhỏ so với mô hình toán học được sử dụng cho các tổ hợp của nó. Đặc tính này rất quan trọng: không hệ thống vật lý thực tế nào ứng xử giống các chuỗi phương trình vi phân được dùng để biểu diễn toán học học chính nó. Điểu hình là một mô hình toán học đơn giản hơn sẽ được chọn để đơn giản hóa việc tính toán, mặt khác các đặc tính động học thực tế của hệ thống có thể rất phức tạp do đo một mô hình toàn diện là không thể thực hiện được.